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Abstract— While fault injection attacks are common in the world of smart cards and microcontrollers, they are still relatively 
uncommon in the realm of complex embedded microprocessors, such as system on chips found in tablets, smartphones, and automobile 
systems. The primary reason for this is the difficulty of strategically inserting a flaw to render these attacks on such devices successful. 
Nonetheless, these devices offer new tools for debugging and development that can be seen as potentially opening the door for attacks. 
Among these is the JTAG debug tool, which is found on the majority of modern electronics. We introduce the first JTAG-based fault 
injection attack in this letter. We describe how this works using a privilege escalation attack as an example tool can be used either to 
check the feasi- bility of this attack by fault injection or to perform an actual attack. 

 

Index Terms—Fault injection attack, JTAG, system   on chip (SoC). 

 

I. INTRODUCTION 

HE IDEA of using hardware faults to derive sensitive information was first introduced in 1997 [1]. The idea 

was rapidly generalized and used on protected systems, such as microcontrollers and smart cards [2]. Many studies on this topic 

and on how to thwart such attacks are still being con- ducted by researchers to evaluate security weaknesses in the face of such 

threats [3]. However, with the democratization of smartphones and other connected devices, the manipulation of sensitive data 

tends to be done not only by smart cards but also by complex and multipurpose system on chips (SoCs). Such devices thus also 

need to be evaluated against fault injection and combined attacks, but so far, very few intrusive tests have been conducted on such 

systems. The rarity of these tests is mainly due to the difficulty involved in interacting with a tar- geted module integrated in a 

complex SoC at exactly the right place and the right time. This difficulty is due to their com- plex architectures, their size and the 

package which coats them on one hands, and to the operating system (OS) running on them, on the other. This letter describes the 

improper use ofa widespread hardware debugging tool that makes it possible to get round the complexity of the SoCs either to 

undertake a fault attack or to check weather an attack would be possi- ble using fault injection. The rest of this letter is organized 

as follows. 

Section II describes the contribution of this letter. Section III explains our attack and the example that inspired the use of the 

debugging tool. Section IV describes the device being tested, the environmental setup and our experiments. Finally, Section 

V contains the discussion and Section VI our conclusions. 

 
II. OUR CONTRIBUTION 

This letter fits in the extended field of “fault attacks” that deals with complex SoC. Our research presents the widespread 

debugging tool JTAG [4] used as a fault injection vector. Until now JTAG was presented in the literature on hardware secu- rity 

only as a way of dumping and snooping data [5], [6]. However, considering the debug access function of the JTAG used by 

debugger tools that access the internals of a chip, making its resources and functionality available, modifiable and stoppable, 

highlights the fact that we have at our disposal a path for fault injection into a running program. 

These debugging capabilities have been already exploited in [7] to implement a combined attack to load and run a mali- cious 

code. The authors explain how they can make former software attacks still efficient by modifying the code of func- tions with the 

JTAG. In this letter, we propose to use the JTAG as a fault injection tool. We describe how the JTAG can be used to set up a 

disruption when a program is running exactly as in the classical fault injection attacks. Using an example on an Android-

powered device, we illustrate this new path for fault injection in a JTAG fault injection attack (JTAG-FIA) for privilege escalation. 

 
III. JTAG-FIA 

The JTAG-FIA is based on the JTAG debugging capacities to change on the fly a value linked to the system security with the 

aim of degrading it. 

 
A. JTAG-FIA Principle 

In a program or an OS, a security function f to be degraded is targeted. A set of rules R         r0 , . .. ,  rn   determine the 

behavior of f . Let fR be this function. First, the rules are reversed in order to detect which rule ri
∗ has a security impact and any 

comparison operation based on a value v in memory. 
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Then, with JTAG, the process of fR is halted before the rule ri
∗ is applied. The memory value is changed: v → vr, which changes 

the rule into a new rule: ri
∗ → ri

∗r
. Finally, R → Rr 

and thus fRr do not fulfill its intended purpose. When the  

 

 

 

 

 

 

Fig. 1. Arranged list of 0-masked addresses of memory .data. 

 

process execution is continued, f no longer guarantees security. In the following section and as an example, this 

principle is applied in a privilege escalation attack on a function workingwith the user privilege in the Android 

OS.JTAG-FIA Application in Privilege Escalation 

A privilege escalation is the act of exploiting a bug, design flaw or configuration oversight in an OS or software applica- tion to 

increase access to resources that are normally protected from an application or user. The result is that an applica- tion with 

more privileges than intended by the application developer or system administrator can perform unauthorized actions. 

1) Principle of Our Attack: Let fR be a function display- ing some critical information. Let   v     N, ri
∗(v)    R be the rule that 

determines which privilege is needed to access the information. By definition ri
∗(0): “any user can access,” ri

∗(1): 

“only privileged users can access” and   v      2, ri
∗(v): “no 

user can access” where “users” is an entity that can access to 

these information (human user, program, function, etc.). With the JTAG, the value v stored in memory is targeted and set to 0 in 

order to display the critical information regardless of any privilege. 

2) Detailed Attack: To perfectly understand the attack and anticipate all possible difficulties, some very specific technical 

details related to Android are required. They are detailed here. In Android OS and more generally in Linux systems, the

 kernel symbol addresses are displayed by the 

/proc/kallsyms file. However, exposing these pointers provides an easy target for kernel write vulnerabilities, since they 

reveal the locations of writable structures containing easily triggerable function pointers. Also for the purpose of security, the 

function s_show (     fR) in the kallsyms 

file use the %pK format specifier (  ri
∗) which is designed 

to hide exposed kernel pointers, specifically via /proc file 

interfaces. The behavior of %pK depends on the integer value of kptr_restrict sysctl ( v). By definition in source code of 

the Linux kernel, if the kptr_restrict value is equal to 0, there are no restrictions. If kptr_restrict is set to 1, the 

kernel pointers using %pK will be replaced by 0s unless the current user has privileged permission. Otherwise, kernel pointers 

printed using %pK are printed as 0s regardless of privileges. Obviously, most of the Android devices provided to customers are 

in simple user mode and kprt_restrict is set to 1. This value can only be changed by a privileged user. So, the principle of our 

attack is the following: by a fault injection, force the kptr_restrict value to be set to 0. Making these addresses available 

for a simple user is a privilege escalation. 

IV. EXPERIMENTATION 

A. Experimental Set-Up 

1) Device   Under   Test:   In   our   experiment,   we   used a development board with a widespread octa-core 64-bit ARM 

Cortex-A53 application processor embedded executing Android OS version 6.0.1—Marshmallow. For our experiment, 
 

the board was deliberately left in user mode with no privileges. To communicate with the Android-powered device, we used 

Android debug bridge (ADB), which is a command line tool without root privileges. 

2) JTAG Hardware Debugger: The debug tool used for the manipulations is a Lauterbach probe. The Trace32 soft of this probe 

provides a very detailed and tailored GUI that gives an overview of the device and can perform a wide range of operations on 

it. Moreover it makes it possible to include and automate JTAG routines in a C program as required in our next experiment. 
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B. JTAG-FIA for Privilege Escalation 

The success of the JTAG-FIA depends on its ability to mod- ify the value of kptr_restrict which manages access to the 

kernel symbol addresses. The main difficulty is finding the address of the value in memory. In this case, the com- plexity is 

due to the size of the main memory (RAM) and to its management by the OS running on the SoC. In any case, OSs loaded into 

the RAM can be seen as hexadecimal values of compiled code and these values depend on the compiler used and the options 

selected among other things. So to find the kptr_restrict address value, the trick is to search for a typical fixed pattern in 

the memory nearby. Among the huge amount of hexadecimal values, the most easily identifi- able are the ASCII strings of 

characters. So, the JTAG-FIA for privilege escalation can be split into two main steps. 

1) With the JTAG tool, find the address of a typical fixed ASCII string near the kptr_restrict address. 

2) From this address, go to the kptr_restrict address 

by modifying the values in memory (i.e., injecting a fault) with the JTAG probe and check if the addresses are displayed 

with the ADB tool. 

The following sections describe how some of the difficulties encountered in these two points were resolved. 

1) Find the Address of Typical Fixed ASCII String: Actually, the value of kptr_restrict is a 32-bit word in the .data 

memory section that is either 0x1 or 0x2 when a simple user cannot read the kernel symbol addresses. On a modern 64-bit 

architecture with 264 1 addresses, directly finding which 0x1 or 0x2 match kptr_restrict in the memory is a laborious and 

time consuming task. For example, in our experiment, among the only 2.1GB of data dumped by JTAG means there are still 1 733 

598 of 0x1 and 1 349 512 of 0x2. Checking the effect of the change of each of these values is too long considering our 

procedure. Fortunately 
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Fig. 2. Little endian hexadecimal values targeted in the memory. 

 
 

the memory .data field of Linux kernel contains ASCII strings that can be considered as markers. As described in several Linux 

kernels files [8], for example, those located in the /net/sched/ directory, part of these strings are the .id values of 

structures. In particular, the ones in the sch_generic.c and sch_fifo.c files, which are ASCII strings stored just after the 

address of the kptr_restrict value (see Fig. 1). However, dumping and parsing the whole system memory to find character 

strings is time consuming, especially with a set of 64-bits addresses. This is why a trick is used to find the approximate address 

to begin the search. On all Android devices, and for all unprivileged users, the version of the kernel and the compiler used to build 

it can be identified by sending the command line “adb shell “cat 

/proc/version”” through the ADB tool. In our experi- ment, the Linux kernel version is 4.1.15 and the compiler is gcc 

version 4.9.x-Google. This makes it possible to download the same kernel version on [8] and the same com- piler on [9], 

to build it, and to obtain an approximate memory map. When the kernel is built, the System.map file pro- vides the same 

information as the “/proc/kallsyms” file with no 0-masked values but with some potential offsets in the addresses due to 

the compilation options. Nevertheless, the address of the _text symbol defines reserving memory block for the kernel _text and 

_data section. These manip- ulations reveal the address to start dumping: @SD (in our case @SD 0xFFFFFFC000000000). 

The first step is quite simple: dump the kernel by small packages, one by one, starting at the previously defined address and then 

parse these packages to find the required ASCII strings. Considering the .id values included in the sch_generic.c and 

sch_fifo.c files, the ASCII val- ues searched for are the ones detailed in Fig. 2. Using the same principle as pattern 

matching algorithms, in approxi- mately 52 s, 27 packages of 78 KB are dumped and parsed until the required values are found in 

the same order as in the 

/proc/kallsysms file. Fig. 3 summarizes this step and shows several addresses, where the ASCII strings of charac- ters are 

found. Only the “noop” string appears several times before all the strings are found in the right order. Fig. 4 shows a memory dump 

with the JTAG probe at the addresses, where the strings have been identified. The address of “pfifo_fast” in the memory is the 

starting point of the next step of our JTAG-FIA for privilege escalation. 

 

 

 
 

  

 

  

 

 

 

  

 

 
 

 

 
  

  

 

  

 

 

Fig. 3. Upper part shows the relative positions of the addresses of the ASCII strings into the RAM memory. The lower chart, gives the ASCII value 

addresses of each string found in the memory from the address @SD =0xFFFFFFC000000000. 

2) Go   to   the   kptr_restrict Address: The last step is a straightforward scan from the start address defined in 

the previous stage up to the kptr_restrict value. The routine is the following: (init) start_addr 

0xFFFFFFC000D6CD88 and addr start_addr. 1) Read the 32-bit word value at the address addr  start_addr - 

0x4, if the latter is equal to 0x00000001 or 0x00000002 change it to 0x00000000. Then, from the ADB interface, 

send the command line to check if the kernel symbols are avail- able: adb shell cat /proc/kallsysms. If the 

values returned are 0-masked, then re-establish the original value of the 32-bit word and read the next word, i.e., repeat 

step 1). Otherwise, the attack succeeded and the kernel symbols are available for simple users (end). During the execution 

of this routine, only six 0x1 and one 0x2 were counted. The kptr_restrict is the last 0x2 value found at the address 

0xFFFFFFC000D6B320. 

 
V. DISCUSSION 

In this letter, we describe how JTAG can be used to modify the code on the fly in order to tamper with any OS. We did not 

crash the system but simply hijacked it. The condition for the success of the attack is accessing the JTAG interface. For the sake 

of practicality, most development boards have their JTAG port available and unlocked. But what about commercial systems? Two 

approaches are possible. 

 
A. Try to Access the JTAG Interface 

Nowadays many SoC manufacturers are aware of the risks associated with JTAG and consequently provide secu- rity 

solutions. As explained in some academic articles, such 
 



  

 

 

 

 
 

Fig. 4. ASCII in the .data field of the memory kernel in the RAM memory displayed by JTAG debugger. 

 

 
as [5] and [10] it is possible to take preventive measures to ensure JTAG integrity or to directly secure the scan chains as in 

[11] and [12]. The detection of a JTAG misuse is also possible as explained in [13]. However, many manufacturers make do with 

lock access mechanisms as in [14]. 

It is therefore interesting to study these protection mecha- nisms. As shown in [15], it is possible to imagine new attack paths 

and several fault injections in order to bypass such security mechanisms and access JTAG. 

 
B. Use the JTAG to Check the Feasibility and the Effect of Fault Injection 

In the introduction, we explained why it is so complex to set up a fault injection attack on SoCs. Even if the JTAG is disabled 

on the device an attacker would like to attack, it could still be used on a development board similar to this device to simulate whether 

an attack is feasible. Our privilege escalation attack showed that only one bit has to be flipped. By using an other physical quantity, 

for example, electromagnetic field, it is possible to measure the emission field related to the call of the function and detect it. This 

kind of detection is already used for encryption on SoC [16]. Once the instant of the function call is detected, an electromagnetic 

pulse is injected to disrupt it, as reported in [17]. The setup of this kind of manipulation is time consuming but by repeating the 

call to the func- tion and the EM pulse injection it is statistically possible to succeed. 

Both approaches show that the JTAG can also be seen as a support for setting up a fault attack. 

 
VI. CONCLUSION 

Using the JTAG debugger, we have shown how to alter the code dynamically and meddle with any form of 

  

of OS. We can change a value associated with system security by utilizing solely the JTAG's debugging capabilities. JTAG is a 

novel fault injection tool that can be used to carry out or mimic the viability of an attack using fault injection directed at a 

sophisticated embedded microprocessor. While the JTAG-FIA example presented here is optimized for Android-powered 

smartphones, the idea is applicable to any OS running on devices that have a JTAG access port. Our method allows one to assess 

the viability or launch an attack straight away. 
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